
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 2. Control Flow + TDD

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

Overview of Control Flow
Statements

• Selection statements: if, if-else, and switch.

• Iteration statements: while, do-while, basic
for, and enhanced for.

• Transfer statements: break, continue, return,
try-catch-finally, throw, and assert.

Selection Statements

• simple if statement

• if-else statement

• switch statement

The Simple if Statement

• The simple if statement has the following
syntax:

if (<conditional expression>) <statement>

Examples:
// emergency is a boolean variable

if (emergency) operate();

if (temperature > critical)

soundAlarm();

Activity Diagram
for if Statements

The Simple if Statement

Note that <statement> can be a block, and the block
notation is necessary if more than one statement is to be
executed when the <conditional expression> is true.

if (catIsAway()) { // Block

getFishingRod();

goFishing();

}

The Simple if Statement

Note that the if block can be any valid statement. In

particular, it can be the empty statement (;) or the empty
block ({}). A common programming error is an inadvertent
use of the empty statement.

if (emergency);

// Empty if block operate();

// Executed regardless of whether

// it was an emergency or not.

The if-else Statement

The if-else statement is used to decide between two
actions, based on a condition. It has the following
syntax:

if (<conditional expression>)

<statement1>

else

<statement2>

The if-else Statement
examples

if (emergency)

operate();

else

joinQueue();

if

(temperature>criti

cal)

soundAlarm();

else

if (catIsAway()) {

getFishingRod();

goFishing();

} else

playWithCat();

if statements can be nested

if (temperature >= upperLimit) {

//(1) if (danger)

// (2) Simple if.

soundAlarm();

if (critical) // (3)

evacuate();

else // Goes with if at (3).

turnHeaterOff();

} else // Goes with if at (1).

turnHeaterOn();

Use of block notation {}

// (A): Block notation

if (temperature > upperLimit) { // (1)

if (danger) soundAlarm(); // (2)

} else // Goes with if at (1).

turnHeaterOn();

// (B): Without block notation

if (temperature > upperLimit) // (1)

if (danger) soundAlarm(); // (2)

else turnHeaterOn(); // Goes with if at (2).

// (C):

if (temperature > upperLimit) // (1)

if (danger) // (2)

soundAlarm();

else // Goes with if at (2).

turnHeaterOn();

Cascading if-else statements

if (temperature >= upperLimit) { // (1)

soundAlarm();

turnHeaterOff();

} else if (temperature < lowerLimit) { // (2)

soundAlarm();

turnHeaterOn();

} else if (temperature==(upperLimit+lowerLimit)/2) {
// (3)

doingFine();

} else // (4)

noCauseToWorry();

The switch Statement

switch (<switch expression>) {

case label1: <statement1>

case label2: <statement2>

...

case labeln: <statementn>

default: <statement>

} // end switch

Activity Diagram
for a switch Statement

Fall Through
in a switch Statement

public class Advice {

public final static int LITTLE_ADVICE = 0;

public final static int MORE_ADVICE = 1;

public final static int LOTS_OF_ADVICE = 2;

public static void main(String[] args) {

dispenseAdvice(LOTS_OF_ADVICE);

}

………// in the next slide

}

Activity Diagram
for a switch Statement

public static void dispenseAdvice(int howMuchAdvice){

switch(howMuchAdvice) { // (1)

case LOTS_OF_ADVICE:

System.out.println("See no evil."); // (2)

case MORE_ADVICE:

System.out.println("Speak no evil.");// (3)

case LITTLE_ADVICE:

System.out.println("Hear no evil."); // (4)

break; // (5)

default:

System.out.println("No advice."); // (6)

}

}

Using break in a switch
Statement

public static String digitToString(char dig) {

String str = "";

switch(dig) {

case ’1’: str = "one"; break;

case ’2’: str = "two"; break;

case ’3’: str = "three"; break;

case ’4’: str = "four"; break;

case ’5’: str = "five"; break;

case ’6’: str = "six"; break;

case ’7’: str = "seven"; break;

case ’8’: str = "eight"; break;

case ’9’: str = "nine"; break;

case ’0’: str = "zero"; break;

default:

System.out.println(dig+" is not a digit!");

}

return str;

}

Iteration Statements

Java provides four language constructs
for loop construction:

• the while statement

• the do-while statement

• the basic for statement

• the enhanced for statement

The while Statement

The syntax of the while loop is

while (<loop condition>)

<loop body>

The <loop condition> is evaluated before executing the
<loop body>. The while statement executes the <loop
body> as long as the <loop condition> is true.

When the <loop condition> becomes false, the loop is
terminated and execution continues with the statement
immediately following the loop.

Activity Diagram for
the while Statement

The while statement is normally used when the
number of iterations is not known.
while (noSignOfLife())

keepLooking();

The while Statement
(warning)

Since the <loop body> can be any valid statement,
inadvertently terminating each line with the empty
statement (;) can give unintended results.

Always using a block statement, { ... }, as the <loop
body> helps to avoid such problems.

//Empty statement as loop body!

while (noSignOfLife());

keepLooking();

// Statement not in the loop body.

The do-while Statement

The syntax of the do-while loop is
do

<loop body>

while (<loop condition>);

The <loop condition> is evaluated after executing
the <loop body>. The value of the <loop
condition> is subjected to unboxing if it is of the
type Boolean. The do-while statement executes
the <loop body> until the <loop condition>
becomes false.

When the <loop condition> becomes false, the
loop is terminated and execution continues with

Activity Diagram for the
do-while Statement

while and do-while
The <loop body> in a do-while loop is invariably a statement

block. It is instructive to compare the while and the do-while
loops.

In the examples below, the mice might never get to play if the
cat is not away, as in the loop at (1). The mice do get to play at
least once (at the peril of losing their life) in the loop at (2).

while (cat.isAway()) { // (1)

mice.play();

}

do { // (2)

mice.play();

} while (cat.isAway());

The for(;;) Statement

The for(;;) loop is the most general of all the loops. It
is mostly used for counter-controlled loops, i.e.,
when the number of iterations is known beforehand.

The syntax of the loop is as follows:

for (<initialization>;

<loop condition>;

<increment expression>)

<loop body>

The semantics of
the for(;;) loop

<initialization>

while (<loop condition>) {

<loop body>

<increment expression>

}

Activity Diagram for
the for Statement

for statement examples

int sum = 0;

int[] array = {12, 23, 5, 7, 19};

for (int index = 0; index < array.length; index++) // (1)

sum += array[index];

for (int i = 0, j = 1, k = 2; ... ; ...) ...; // (2)

for (int i = 0, String str = "@"; ... ; ...) ...; // (3)

//Compile time error.

int i, j, k; // Variable declaration

for (i = 0, j = 1, k = 2; ... ; ...) ...; // (4)

//Only initialization

for statement examples

// (5) Not legal and ugly:

for (int i = 0, System.out.println("not legal!");

flag; i++) { //Error!

// loop body

}

// (6) Legal, but still ugly:

int i; // declaration factored out.

for (i = 0, System.out.println("legal!");
flag; i++) { // OK.

// loop body

}

for statement examples

The <increment expression> can also be a
comma-separated list of expression statements.
The following code specifies a for(;;) loop that
has a comma-separated list of three variables in
the <initialization> section, and a comma-
separated list of two expressions in the
<increment expression> section:

for statement examples

// Legal usage but not recommended.

int[][] sqMatrix = { {3, 4, 6}, {5, 7, 4}, {5, 8, 9} };

for (int i = 0,

j = sqMatrix[0].length - 1,

asymDiagonal = 0; // initialization

i < sqMatrix.length; // loop condition

i++, j--) // increment expression

asymDiagonal += sqMatrix[i][j]; // loop body

for(;;) statement

All sections in the for(;;) header are optional. Any
or all of them can be left empty, but the two semicolons
are mandatory. In particular, leaving out the <loop
condition> signifies that the loop condition is true.

The “crab”, (;;), is commonly used to construct an
infinite loop, where termination is presumably achieved
through code in the loop body (see next section on
transfer statements):

for (;;) Java.programming();

// Infinite loop

The for(:) Statement

The enhanced for loop is convenient when we
need to iterate over an array or a collection,
especially when some operation needs to be
performed on each element of the array or
collection.

The for(:) Statement

The element variable is local to the loop block
and is not accessible after the loop terminates.

Also, changing the value of the current
variable does not change any value in the array.

The loop body, which can be a simple
statement or a statement block, is executed for
each element in the array and there is no
danger of any out-of-bounds errors.

Transfer Statements

Java provides six language constructs for transferring
control in a program:

• break

• continue

• return

• try-catch-finally

• throw

• assert

Labeled Statements

A statement may have a label.

<label> : <statement>

A label is any valid identifier and it always immediately
precedes the statement.

Label names exist in their own name space, so that they do
not conflict with names of packages, classes, interfaces,
methods, fields, and local variables.

Labeled Statements

A statement can have multiple labels:
LabelA: LabelB:

System.out.println(
"Mutliple labels. Use

judiciously.");

A declaration statement cannot have a label:
L0: int i = 0; // Compile time error.

A labeled statement is executed as if it was unlabeled,
unless it is the break or continue statement.

The break Statement

The break statement comes in two forms:
the unlabeled and the labeled form.

break; // the unlabeled form

break <label>; // the labeled form

Unlabeled break

The unlabeled break statement terminates

loops (for(;;), for(:), while, do-while)

and

switch statements,

and transfers control out of the current context (i.e., the
closest enclosing block).

The rest of the statement body is skipped, and execution
continues after the enclosing statement.

Labeled break

A labeled break statement can be used to terminate any
labeled statement that contains the break statement.

Control is then transferred to the statement following the
enclosing labeled statement.

In the case of a labeled block, the rest of the block is
skipped and execution continues with the statement
following the block:

Labeled break

out:

{ // (1) Labeled block

// ...

if (j == 10) break out;

// (2) Terminate block. Control to (3).

System.out.println(j);

// Rest of the block not executed if j == 10.

// ...

}

// (3) Continue here.

The continue Statement

Like the break statement, the continue statement
also comes in two forms: the unlabeled and the
labeled form.

continue; // the unlabeled form

continue <label>; // the labeled form

The continue Statement

The continue statement can only be used in a for(;;),
for(:), while, or do-while loop to prematurely stop
the current iteration of the loop body and proceed with
the next iteration, if possible.

The continue Statement

• In the case of the while and do-while loops, the rest of
the loop body is skipped, that is, stopping the current
iteration, with execution continuing with the
<loop condition>.

• In the case of the for(;;) loop, the rest of the loop body
is skipped, with execution continuing with the
<increment expression>.

The return Statement

The return statement is used to stop execution of a
method and transfer control back to the calling code (also
called the caller).

The usage of the two forms of the return statement is
dictated by whether it is used in a void or a non-void
method

The return Statement

Modern technology
development in Java

• TDD

• Maven

• Gradle

• …

History
• Kent Beck developed the first xUnit automated test

tool for Smalltalk in mid-90’s

• Beck and Gamma (of design patterns Gang of Four)
developed JUnit on a flight from Zurich to
Washington, D.C.

• Martin Fowler: “Never in the field of software
development was so much owed by so many to so
few lines of code.”

• JUnit has become the standard tool for Test-Driven
Development in Java (see junit.org)

• JUnit test generators now part of many Java IDEs
(IntelliJ IDEA, NetBeans, Eclipse, BlueJ, …)

Why create a test suite?

• Obviously you have to test your code—right?
– You can do ad hoc testing (running whatever tests occur to you

at the moment), or

– You can build a test suite (a thorough set of tests that can be run
at any time)

• Disadvantages of a test suite
– It’s a lot of extra programming

• True, but use of a good test framework can help quite a bit

– You don’t have time to do all that extra work
• False! Experiments repeatedly show that test suites reduce

debugging time more than the amount spent building the test suite

• Advantages of a test suite
– Reduces total number of bugs in delivered code

– Makes code much more maintainable and refactorable

Architectural overview

• JUnit test framework is
a package of classes
that lets you write tests
for each method, then
easily run those tests

• TestRunner runs tests
and reports TestResults

• You test your class by
extending abstract class
TestCase (optional)

• To write test cases, you
need to know and
understand the
Assert class

Writing a TestCase

• To start using JUnit, create a subclass of TestCase, (optional in
JUnit 4 and 5) to which you add test methods

• Name of class is important – should be of the form
MyClassTest

• This naming convention lets TestRunner automatically find
your test classes

import org.junit.jupiter.api.BeforeEach;

import static org.junit.jupiter.api.Assertions.*;

class MainTest {

@BeforeEach

void setUp() {

}

}

Writing methods in TestCase

• Pattern follows programming by contract paradigm:
– Set up preconditions
– Exercise functionality being tested
– Check postconditions

• Example:
public void testEmptyList() {

Bowl emptyBowl = new Bowl();
assertEquals(“Size of an empty list should be zero.”,

0, emptyList.size());
assertTrue(“An empty bowl should report empty.”,

emptyBowl.isEmpty());
}

• Things to notice:
– Specific method signature – public void testWhatever()
– Coding follows pattern
– Notice the assert-type calls…

Assert methods

• Each assert method has parameters like these:
message, expected-value, actual-value

• Assert methods dealing with floating point numbers
get an additional argument, a tolerance

• Each assert method has an equivalent version that
does not take a message – however, this use is not
recommended because:

– messages helps documents the tests

– messages provide additional information when
reading failure logs

Assert methods

• assertTrue(String message, Boolean test)

• assertFalse(String message, Boolean test)

• assertNull(String message, Object object)

• assertNotNull(String message, Object object)

• assertEquals(String message, Object expected, Object actual)

// uses equals method

• assertSame(String message, Object expected, Object actual)

// uses == operator

• assertNotSame(String message, Object expected, Object actual)

More stuff in test classes

• Suppose you want to test a class Counter

• public class CounterTest {

– This is the unit test for the Counter class

• public CounterTest() { } //Default constructor

• protected void setUp()

– Test fixture creates and initializes instance variables, etc.

• protected void tearDown()

– Releases any system resources used by the test fixture

• public void testIncrement(), public void
testDecrement()

– These methods contain tests for the Counter methods
increment(), decrement(), etc.

– Note capitalization convention

JUnit tests for Counter

public class CounterTest {
Counter counter1;
@BeforeEach
protected void setUp() { // creates a test fixture

counter1 = new Counter();
}
@Test
public void testIncrement() {

assertTrue(counter1.increment() == 1);
assertTrue(counter1.increment() == 2);

}
@Test
public void testDecrement() {

assertTrue(counter1.decrement() == -1);
}

} Note that each test

begins with a brand new

counter

This means you don’t have to worry

about the order in which the tests are

run

TestSuites
• TestSuites collect a selection of tests to run them as a unit
• Collections automatically use TestSuites, however to specify the

order in which tests are run, write your own:

• Should seldom have to write your own TestSuites as each method
in your TestCase should be independent of all others

• Can create TestSuites that test a whole package:

public static Test suite() {
suite.addTest(new TestBowl(“testBowl”));
suite.addTest(new TestBowl(“testAdding”));
return suite;

}

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTestSuite(TestBowl.class);
suite.addTestSuite(TestFruit.class);
return suite;

}

JUnit Demo (for online)

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 2. Control Flow + TDD

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

